Solution Set 5, 18.06 Fall '12

1. Do problem 5 from 4.1

Solution. (a) $A x=b$ is saying that b is in the column space of A, $A^{T} y=0$ is saying that y is in the nullspace of A^{T}, we know that the column space of A is orthogonal to the null space of A^{T}, so we have $y^{T} b=0$ (note that y and x don't necessarily have the same dimension so the second option doesn't really make sense).
(b) From the information given, we know that $(1,1,1)^{T}$ is in the column space of A^{T} and x is in the null space of A. This implies that x is orthogonal to $(1,1,1)$.
2. Do problem 29 from 4.1

Solution. If we write $A A^{-1}=I$ in terms of rows of A and columns of A^{-1}, we see that the first column of A^{-1} is orthogonal to all the rows of A except the first. Indeed the inner product of the first column of A^{-1} with the first row of A is 1 .
3. Do problem 29 from 4.1

Solution. For the first question we can take :

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 0 & 0 \\
3 & 0 & 0
\end{array}\right)
$$

Clearly, v is in the row space and column space.
For the second quesion we can take

$$
A=\left(\begin{array}{lll}
-2 & 1 & 0 \\
-4 & 2 & 0 \\
-6 & 3 & 0
\end{array}\right)
$$

It is easy to check that v is in the column space and in the null space. Clearly v is not orthogonal to itself (the only vector that is orthogonal to itself is 0) therefore v can't be both in the null space of A and the row space or both in the null space of A^{T} and in the column space.

4. Do problem 13 from 4.2

Solution. The column space of A is easily described as the space of 4 -dimensional vectors whose last coordinate is 0 . The projection of b is the vector $p(b)=(1,2,3,0)$, indeed $p(b)$ must be in the column space of A and be such that $b-p(b)$ is orthogonal to the column space of A. Clearly $(1,2,3,0)$ satisfies these two conditions.
Using the same reasoning, it is not hard to check that projecting any vector to the column space of A is the same thing as setting the last coordinate equal to 0 .
If we believe that, the projection matrix is $P=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. Indeed when this P is multiplied with a vector, it has exacly the effect of leaving the first three coordinates the same and setting the last one to 0.

One could also use the formula $P=A\left(A^{T} A\right)^{-1} A^{T}$.
If we use this, we find that $A^{T} A$ is the 3 by 3 identity matrix. So $P=A I^{-1} A^{T}=A A^{T}$ and then it is a straightforward computation to check that P is what is written above.
5. Do problem 22 from 4.2

Solution. We just compute. The key points to have in mind is that $\left(M^{-1}\right)^{T}=\left(M^{T}\right)^{-1},(M N)^{T}=N^{T} M^{T}$ and $\left(M^{T}\right)^{T}=M:$

$$
\begin{aligned}
& \left.P^{T}=\left(A\left(A^{T} A\right)^{-1} A^{T}\right)^{T}=A\left(\left(A^{T} A\right)^{-1}\right)^{T}\right) A^{T} \\
& \left.\left.=A\left(\left(A^{T} A\right)^{T}\right)^{-1}\right) A^{T}=A\left(A^{T} A\right)^{-1}\right) A^{T}=P
\end{aligned}
$$

6. Do problem 24 from 4.2

Solution. The nullspace of A^{T} is orthogonal to the column space of A. So if $A^{T} b=0$, the projection of b onto $C(A)$ should be $p=0$. Indeed the projection of a vector onto a space it is orthogonal to is 0 .
If we take $P=A\left(A^{T} A\right)^{-1} A^{T}$, it is obvious that we indeed have $P b=$ 0 .
7. Do problem 30 from 4.2

Solution. (a) We see that the column space of A is the line generated by $a=\binom{3}{4}$. The projection matrix is then $P_{C}=a a^{T} / a^{T} a$. We find :

$$
P_{C}=\frac{1}{25}\left(\begin{array}{cc}
9 & 12 \\
12 & 16
\end{array}\right)
$$

(b) The row space of A is the line generated by $\left(\begin{array}{l}3 \\ 6 \\ 6\end{array}\right)$ which is the same as the line generated by $\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$. We use the same formula that we used in the first question :

$$
P_{R}=\frac{1}{9}\left(\begin{array}{lll}
1 & 2 & 2 \\
2 & 4 & 4 \\
2 & 4 & 4
\end{array}\right)
$$

If we do the computation $P_{C} A P_{R}$ we find A. Let's try to explain that. First let's try to understand what $P_{C} A$ is. The column of the matrix $P_{C} A$ are P_{C} times the columns of A. But P_{C} is the projection onto the column space and the columns of A are in the column space by definition. Hence we see that P_{C} does nothing to the columns of A and $P_{C} A=A$.
Now we are reduced to understand $A P_{R}$. It is easier to try to understand its transpose $P_{R}^{T} A^{T}$. We know that $P_{R}^{T}=P_{R}$, so we need to understand $P_{R} A^{T}$. The columns of this matrix are P_{R} times the columns of A^{T} but the columns of A^{T} are the rows of A. Hence they are in the row space and multiplying them by P_{R} leaves them unchanged. This is precisely saying that $P_{R} A^{T}=A^{T}$. However we were really interested in $A P_{R}$ which is the transpose of what we have just computed. Thus $A P_{R}=A$.
This explains why $P_{C} A P_{R}=A$.
8. Do problem 5 from 4.3

Solution. A horiszontal line of height C fitting these 4 points would satisfy :

$$
\begin{aligned}
& C=0 \\
& C=8 \\
& C=8 \\
& C=20
\end{aligned}
$$

In matrix form, we want to solve :
$A C=b$ with $A=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$. Of course there are no exact solutions but the best approximation is given by solving the equation:

$$
A^{T} A C=A^{T} b
$$

This equation becomes $4 C=0+8+8+20=36$. The best C is 9 . I didn't draw the picture but the errors are the difference between the actual value and 9 i.e. $9,1,1,11$.
9. Do problem 17 from 4.3

Solution. The equations we need to solve if there was an exact solution is :

$$
\begin{aligned}
C-D & =7 \\
C+D & =7 \\
C+2 D & =21
\end{aligned}
$$

Of course this system is unsolvable. We know that the best approximation to a solution is given by the solution to $A^{T} A\binom{C}{D}=A^{T}\left(\begin{array}{c}7 \\ 7 \\ 21\end{array}\right)$ with $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 1 \\ 1 & 2\end{array}\right)$.

We have $A^{T} A=\left(\begin{array}{ll}3 & 2 \\ 2 & 6\end{array}\right)$ and $A^{T}\left(\begin{array}{c}7 \\ 7 \\ 21\end{array}\right)=\binom{35}{42}$. Therefore we want to solve :

$$
\left(\begin{array}{ll}
3 & 2 \\
2 & 6
\end{array}\right)\binom{C}{D}=\binom{35}{42}
$$

We find $C=9$ and $D=4$. Hence the best approximation is the line $y=9+4 t$.

